首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3893篇
  免费   284篇
  国内免费   515篇
  2023年   48篇
  2022年   44篇
  2021年   72篇
  2020年   90篇
  2019年   109篇
  2018年   93篇
  2017年   117篇
  2016年   105篇
  2015年   119篇
  2014年   123篇
  2013年   168篇
  2012年   90篇
  2011年   160篇
  2010年   96篇
  2009年   215篇
  2008年   228篇
  2007年   233篇
  2006年   219篇
  2005年   173篇
  2004年   187篇
  2003年   146篇
  2002年   98篇
  2001年   78篇
  2000年   84篇
  1999年   86篇
  1998年   115篇
  1997年   65篇
  1996年   72篇
  1995年   76篇
  1994年   79篇
  1993年   77篇
  1992年   83篇
  1991年   80篇
  1990年   72篇
  1989年   66篇
  1988年   71篇
  1987年   85篇
  1986年   106篇
  1985年   80篇
  1984年   88篇
  1983年   33篇
  1982年   69篇
  1981年   54篇
  1980年   51篇
  1979年   42篇
  1978年   9篇
  1977年   15篇
  1976年   11篇
  1974年   3篇
  1958年   3篇
排序方式: 共有4692条查询结果,搜索用时 15 毫秒
61.
磁场对大豆共生固氮的效应   总被引:1,自引:0,他引:1  
恒定磁场处理慢生大豆根瘤菌“005”和接种后的大豆植株,发现磁场可以提高根瘤的固氮活性。在一定的磁场强度(70—100mT)下,固氮活性平均可以提高4—5倍,植株的结瘤数和根瘤重量平均提高2—3倍。从这样的根瘤中所分离出的根瘤菌,由慢生型转变成快生型,在100植株中有17株的根瘤分离出快生菌。生长世代时间和培养溶液中的pH值与慢生型不同,而与快生型相同。  相似文献   
62.
Summary The cloning, sequencing and mutational analysis of the Bradyrhizobium japonicum symbiotic nitrogen fixation genes fixL and fixJ are reported here. The two genes were adjacent and probably formed an operon, fixLJ. The predicted FixL and FixJ proteins, members of the two-component sensor/regulator family, were homologous over almost their entire lengths to the corresponding Rhizobium meliloti proteins (approx. 50% identity). Downstream of the B. japonicum fixJ gene was found an open reading frame with 138 codons (ORF138) whose product shared 36% homology with the N-terminal part of FixJ. Deletion and insertion mutations within fixL and fixJ led to a loss of approximately 90% wildtype symbiotic nitrogen fixation (Fix) activity, whereas an ORF138 mutant was Fix+. In fixL, fixJ and ORF138 mutant backgrounds, the aerobic expression of the fixR-nifA operon was not affected. NifA itself did not regulate the expression of the fixJ gene. Thus, the B. japonicum FixL and FixJ proteins were neither involved in the regulation of aerobic nifA gene expression nor in the anaerobic NifA-dependent autoregulation of the fixRnifA operon; rather they appeared to control symbiotically important genes other than those whose expression was dependent on the NifA protein. The fixL and fixJ mutant strains were unable to grow anaerobically with nitrate as the terminal electron acceptor. Therefore, some of the FixJ-dependent genes in B. japonicum may be concerned with anaerobic respiration.  相似文献   
63.
Summary The nucleotide sequence of a 4.1 kb DNA fragment containing the fixABC region of Azorhizobium caulinodans was established. The three gene products were very similar to the corresponding polypeptides of Rhizobium meliloti. The C-terminal domains of both fixB products displayed a high degree of similarity with the -subunits of rat and human electron transfer flavoproteins, suggesting a role for the FixB protein in a redox reaction. Two open reading frames (ORF) were found downstream of fixC. The first ORF was identified as fixX on the basis of sequence homology with fixX from several Rhizobium and Bradyrhizobium strains. The second ORF potentially encoded a 69 amino acid product and was found to be homologous to a DNA region in the Rhodobacter capsulatus nif cluster I. Insertion mutagenesis of the A. caulinodans fixX gene conferred a Nif phenotype to bacteria grown in the free-living state and a Fix phenotype in symbiotic association with the host plant Sesbania rostrata. A crude extract from the fixX mutant had no nitrogenase activity. Furthermore, data presented in this paper also indicate that the previously identified nifO gene located upstream of fixA was probably a homologue of the nifW gene of Klebsiella pneumoniae and Azotobacter vinelandii.  相似文献   
64.
Summary Natural carbon and nitrogen isotope ratios were measured in different compartments (needles and twigs of different ages and crown positions, litter, understorey vegetation, roots and soils of different horizons) on 5 plots of a healthy and on 8 plots of a declining Norway spruce (Picea abies (L.) Karst.) forest in the Fichtelgebirge (NE Bavaria, Germany), which has recently been described in detail (Oren et al. 1988a; Schulze et al. 1989). The 13C values of needles did not differ between sites or change consistently with needle age, but did decrease from the sun-to the shade-crown. This result confirms earlier conclusions from gas exchange measurements that gaseous air pollutants did no long-lasting damage in an area where such damage was expected. Twigs (13C between-25.3 and-27.8) were significantly less depleted in 13C than needles (13C between-27.3 and-29.1), and 13C in twigs increased consistently with age. The 15N values of needles ranged between-2.5 and-4.1 and varied according to stand and age. In young needles 15N decreased with needle age, but remained constant or increased in needles that were 2 or 3 years old. Needles from the healthy site were more depleted in 15N than those from the declining site. The difference between sites was greater in old needles than in young ones. This differentiation presumably reflects an earlier onset of nitrogen reallocation in needles of the declining stand. 15N values in twigs were more negative than in needles (-3.5 to-5.2) and showed age- and stand-dependent trends that were similar to the needles. 15N values of roots and soil samples increased at both stands with soil depth from-3.5 in the organic layer to +4 in the mineral soil. The 15N values of roots from the mineral soil were different from those of twigs and needles. Roots from the shallower organic layer had values similar to twigs and needles. Thus, the bulk of the assimilated nitrogen was presumably taken up by the roots from the organic layer. The problem of separation of ammonium or nitrate use by roots from different soil horizons is discussed.  相似文献   
65.
Summary The relationships between resource availability, plant succession, and species' life history traits are often considered key to understanding variation among species and communities. Leaf lifespan is one trait important in this regard. We observed that leaf lifespan varies 30-fold among 23 species from natural and disturbed communities within a 1-km radius in the northern Amazon basin, near San Carlos de Rio Negro, Venezuela. Moreover, leaf lifespan was highly correlated with a number of important leaf structural and functional characterisues. Stomatal conductance to water vapor (g) and both mass and area-based net photosynthesis decreased with increasing leaf lifespan (r2=0.74, 0.91 and 0.75, respectively). Specific leaf area (SLA) also decreased with increasing leaf lifespan (r2=0.78), while leaf toughness increased (r2=0.62). Correlations between leaf lifespan and leaf nitrogen and phosphorus concentrations were moderate on a weight basis and not significant on an area basis. On an absolute basis, changes in SLA, net photosynthesis and leaf chemistry were large as leaf lifespan varied from 1.5 to 12 months, but such changes were small as leaf lifespan increased from 1 to 5 years. Mass-based net photosynthesis (A/mass) was highly correlated with SLA (r2=0.90) and mass-based leaf nitrogen (N/mass) (r2=0.85), but area-based net photosynthesis (A/area) was not well correlated with any index of leaf structure or chemistry including N/area. Overall, these results indicate that species allocate resources towards a high photosynthetic assimilation rate for a brief time, or provide resistant physical structure that results in a lower rate of carbon assimilation over a longer time, but not both.  相似文献   
66.
Summary The effects of short- and long-term exposure to a range in concentration of sea salts on the kinetics of NH inf4 sup+ uptake by Spartina alterniflora were examined in a laboratory culture experiment. Long-term exposure to increasing salinity up to 50 g/L resulted in a progressive increase in the apparent Km but did not significantly affect Vmax (mean Vmax=4.23±1.97 mole·g–1·h–1). The apparent Km increased in a nonlinear fashion from a mean of 2.66±1.10 mole/L at a salinity of 5 g/L to a mean of 17.56±4.10 mole/L at a salinity of 50 g/L. These results suggest that the long-term effect of exposure to total salt concentrations within the range 5–50 g/L was a competitive inhibition of NH inf4 sup+ uptake in S. alterniflora. No significant NH inf4 sup+ uptake was observed in S. alterniflora exposed to 65 g/L sea salts. Short-term exposure to rapid changes in salinity significantly affected both Vmax and Km. Reduction of solution salinity from 35 to 5 g/L did not change Vmax but reduced Km by 71%. However, exposing plants grown at 5 g/L salinity to 35 resulted in an decrease in Vmax of approximately 50%. Exposure of plants grown at 35 g/L to a total sea salt concentration of 50 g/L for 48h completely inhibited uptake of NH inf4 sup+ . For both experiments, increasing salinity led to an increase in the apparent Km similar to that found in response to long-term exposure. Our data are consistent with a conceptual model of changes in the productivity of S. alterniflora in the salt marsh as a function of environmental modification of NH inf4 sup+ uptake kinetics.  相似文献   
67.
L. Högbom  P. Högberg 《Oecologia》1991,87(4):488-494
Summary Current and maximally induced nitrate reductase activity (NRA), total-N, nitrate, K, P, Ca, Mg, Mo and sucrose in leaves ofDeschampsia flexuosa was measured three times during the vegetation period in forests along a deposition gradient (150 km) in south Sweden, in north Sweden where the nitrogen deposition is considerably lower, and at heavily N-fertilized plots. In addition, the interaction between nitrogen nutrition and light was studied along transects from clearings into forest in both south and north Sweden. Plants from sites with high nitrogen deposition had elevated current NRA compared to plants from less polluted sites, indicating high levels of available soil nitrate at the former. Current NRA and total N concentration in grass from sites with high deposition resembled those found at heavily N-fertilized plots. Under such circumstances, the ratio current NRA: maximally induced NRA as well as the concentration of nitrate was high, while the concentration of sucrose was low. This suggests that the grass at these sites was already utilizing a large portion of its capacity to assimilate nitrate. Light was found to play an important role in the assimilation of nitrate; leaf concentration of sucrose was found to be negatively correlated with both nitrate and total N. Consequently, grass growing under dense canopies in south Sweden is not able to dilute N by increasing growth. The diminished capacity of the grass to assimilate nitrate will increase leaching losses of N from forests approaching N saturation.  相似文献   
68.
Summary Plants of Drosera species, neighbouring noncarnivorous plants, and arthropods on or near each Drosera sp. were collected at 11 contrasting habitat locations in SW Australia. At three of the sites clones of the rare glandless mutant form of D. erythrorhiza were collected alongside fully glandular counterparts. The 15N value (15N/14N natural isotope composition) of insect-free leaf and stem fractions was measured, and the data then used to estimate proportional dependence on insect N (%NdI) for the respective species and growth forms of Drosera. The data indicated lower %NdI values for rosette than for self-supporting erect or for climbing vine species. The latter two groups showed an average %NdI value close to 50%. The %NdI increased with length and biomass of climbing but not erect forms of Drosera. 15N values of stems were positively correlated with corresponding values for leaves of Drosera. Leaf material was on average significantly more 15N enriched than stems, possibly due to delayed transport of recent insect-derived N, or to discrimination against 15N in transfer from leaf to the rest of the plant. The comparison of 15N values of insects and arthropod prey, glandless and glandular plants of D. erythrorhiza indicated %NdI values of 14.3, 12.2 and 32.2 at the respective sites, while matching comparisons based on 15N of insect, reference plants and glandular plants proved less definitive, with only one site recording a positive %NdI (value of 10.4%) despite evidence at all sites of feeding on insects by the glandular plants. The use of the 15N technique for studying nutrition of carnivorous species and the ecological significance of insect feeding of different growth forms of Drosera growing in a large range of habitats is discussed.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号